Hosted by uCoz

Задача № 35. Вывести на экран x, записанное в системе счисления с основанием n

Формулировка. Даны натуральные числа x и n (n <= 10). Вывести на экран число x, записанное в системе счисления с основанием n.

Решение. Вспомним правило из задачи 5:

Остаток от деления любого десятичного числа x на число p дает нам разряд единиц числа x (его крайний разряд справа) в системе счисления с основанием p.

Раньше мы принимали это правило без доказательства, однако сейчас мы коснемся его, так как оно достаточно краткое.

Воспользуемся формулой записи десятичного числа x в системе счисления с основанием p, состоящего из r знаков:

x = ar–1 * pr–1 + ar–2 * pr–2 + ... + a2 * p2 + a1 * p1 + a0 * p0,

где pr–1, pr–2, …, p2, p1, p0основание системы счисления, возведенное в соответствующие степени, ar–1, ar–2, ..., a2,a1, a0 – цифры в записи этого числа в системе счисления с основанием p.

Например, число 378 в десятичной системе счисления выглядит так: 378 = 3 * 102 + 7 * 101 + 8 * 100. Если мы подряд выпишем цифры a2 (= 3), a1 (= 7), a0 (= 8), то исходное число восстановится.

Запишем представление числа в 22 двоичной системе счисления (переведем его с помощью калькулятора, оно равно 101102) по этой же формуле: 22 = 1 * 24 + 0 * 23 + 1 * 22 + 1 * 21 + 0 * 20. Понятно, что если мы вычислим выражение в правой части равенства, то получим как раз 22.

Теперь покажем то, что если мы возьмем остаток от деления числа 22 на 2, затем разделим его на 2, отбросив остаток, и будем повторять эти действия до обнуления числа, то в итоге получим все его разряды в порядке справа налево. Возьмем его запись 1 * 24 + 0 * 23 + 1 * 22 + 1 * 21 + 0 * 20 и разделим ее на 2. Из алгебры известно, что если мы делим сумму чисел на некоторое число, то на него делятся все слагаемые этой суммы. 1 * 24, 0 * 23, 1 * 22 и 1 * 21 делятся на 2, так как в них присутствует множитель 2. 0 * 20 = 0 * 1 = 0 не делится на 2, соответственно, это число будет остатком от деления на 2, и при этом по формуле оно является крайним справа разрядом. Затем мы делим всю эту запись на 2 и отбрасываем остаток, получаем: 1 * 23 + 0 * 22 + 1 * 21 + 1 * 20. Очевидно, что при следующем взятии остатка мы получим цифру из крайнего справа слагаемого. Повторяя эту цепочку, мы постепенно получим все цифры числа 22 в системе счисления с основанием 2.

Обобщая вышесказанное, приходим к выводу, что для формирования записи числа нам необходимо получить все остатки от деления x на основание n, при этом деля x на n после каждого взятия остатка.

Каким образом мы запишем остатки справа налево? Очень просто: умножаем очередной остаток на некоторый множитель z, добавляющий необходимое количество нулей, чтобы цифра оказалась в необходимой позиции, и прибавляем к результату r. Поначалу z будет равен 1, так как мы прибавляем цифру к разряду единиц, затем z в каждой итерации будет умножаться на 10.

В итоге мы прибавляем к результату r первый остаток, умноженный на 1, второй остаток, умноженный на 10, третий остаток, умноженный на 100 и так далее, пока не будет сформировано искомое число:

r := 0;

z := 1;

while x <> 0 do begin

  r := r + z * (x mod n);

  x := x div n;

  z := z * 10

end;

Код:

  1. program ConvertNotation;
  2. var
  3. x, n: word;
  4. r, z: integer;
  5. begin
  6. readln(x, n);
  7. r := 0;
  8. z := 1;
  9. while x <> 0 do begin
  10. r := r + z * (x mod n);
  11. x := x div n;
  12. z := z * 10
  13. end;
  14. writeln(r)
  15. end.